
Carthage Core Documentation

Sam Hartman

May 14, 2024

CONTENTS

1 Introduction 1
1.1 Testing Use Case . 1
1.2 Customer Build Use Case . 2
1.3 Reproducing Problems Use Case . 2
1.4 Cyber Training Use Case . 3

2 API Documentation 5
2.1 Dependency Injection . 5

2.1.1 How Dependency Injection Works . 5
2.1.2 Injectors and Classes . 6
2.1.3 Injection Keys . 6
2.1.4 API Reference . 7
2.1.5 Events . 7

2.2 Setup Tasks . 7
2.3 Networking Documentation . 7

2.3.1 Network Events . 7
2.4 Machines: Systems under Control or Simulation . 8

2.4.1 Containers . 8
2.4.2 VMs . 8
2.4.3 Hardware Configuration . 8

2.5 Open Container Interface Support . 8
2.5.1 The OCI Layer . 8
2.5.2 Podman . 8

2.6 Images and Volumes . 8
2.7 SSH and Rsync Support . 8
2.8 File Copying and Insertion . 8

3 Modeling Layer 9
3.1 A Simple Model . 9
3.2 The Modeling Language . 10
3.3 Base Models . 13
3.4 Decorators . 13

4 Designing a Good Model 15
4.1 Arguments . 15

4.1.1 Implementing the Three Argument Strategies . 16

5 Configuring Vault 17

Python Module Index 19

i

Index 21

ii

CHAPTER

ONE

INTRODUCTION

Carthage is an Infrastructure as Code (IAC) framework. Carthage provides models for infrastructure concepts such
as machines, networks, and domains or groups of machines. There are concrete implementations of these models
including containers and virtual machines.

Carthage allows experts to quickly construct infrastructure from a Carthage layout. Infrastructure can be real, virtual,
or a mixture. Often the same layout is used to produce both real and virtual infrastructure. In the core of Carthage,
when we have had to choose between power and efficiency for experts or making things easy for beginners, we have
chosen to empower experts. Carthage evolved in part out of frustrations with other IAC frameworks. On the surface
these other frameworks were easy to understand, but they lacked the power to express real world environments. We
found ourselves writing a tool to compile domain-specific models into inputs for these other frameworks. Rather than
combining the complexity of our precompiler with the limitations imposed by other systems, we focus on providing a
flexible, powerful framework.

While parts of Carthage are expert tools, Carthage works to keep simple tasks simple. We strive to make it easy to
make simple changes to layouts. We also strive to allow complexity to be compartmentalized. It might take a Carthage
expert to design a reusable template for describing networking for a complex layout that can be deployed both on
virtual hardware and on real switches. However, anyone who knows Ansible or some other supported devops tool can
contribute to a Carthage application. Adding an Ansible role or playbook to a Carthage machine is easy.

Many IAC systems focus on building containers and micro-services. By focusing on these environments, significant
simplicity is gained. Some of the Carthage use cases focus on modeling existing architectures that are not micro service
based. Many Carthage layouts do involve at least some portion that is containerized or micro service based. However
Carthage can also model other architectural approaches.

Carthage permits layouts to be described in a declarative manner when that makes sense. There are many advantages
to declarative descriptions: it is possible to introspect the description, and even to compare the state of real hardware
or a cloud environment to the description. However the real world is rarely that simple. As an example, a layout may
wish to create a machine for each developer in an active directory group. So as part of building the layout, Carthage
needs to query the directory server. Such a process cannot be fully declarative. Things get even more complex when
the same layout is responsible for building and maintaining the directory server itself. Supporting such configurations
is a design goal of Carthage.

1.1 Testing Use Case

One of the motivating applications for Carthage is to provide a realistic test environment for a distributed product
that includes hosted and cloud components. In this mode, all machines are realized in virtual environments (either as
containers or VMs).

The goal is to test the product as well as the IAC infrastructure used to install and ship hosted components along with
infrastructure to maintain the cloud service.

The testing environment needs to be entirely isolated from the production environment and cloud services.

1

Carthage Core Documentation

To accomplish this, a Carthage test layout is constructed. This layout starts by building initial OS images. Then it boot-
straps some of the components from the IAC layouts used to install real hardware, re-targeted at virtual environments.
This is used to set up the cloud services. IAC code used to maintain the production services is targeted to set up the
provisioning and inventory cloud services. Data is copied in from an export provided by the real cloud service. The
data is massaged to account for a few differences where the test environment does not fully replicate real hardware. (As
an example, connections to the test network are more uniform than connections to networks around the world.)

Then the production IAC code is run in the virtual environment to bring up and provision virtual analogues of real
equipment and cloud services. Tests are run against these systems and the results reported.

Several features emerge from this test case:

• Carthage supports a multi-stage layout. Until the virtual instance of the provisioning database becomes available,
Carthage doesn’t even know what virtual systems it will ultimately build.

• Carthage needs to be able to interact with complex networks with potentially overlapping addressing plans. The
test network topology directly mirrors the production topology; many of the key services are at the same address.
Carthage needs to make sure that isolation is maintained. Carthage needs to function even when the test network
is embedded entirely within the production network. However in limited cases, for example importing the data
export, connectivity is required.

• Carthage needs to have facilities to reach into the virtual environment and explore test failures, both for graphical
and non-graphical sessions.

1.2 Customer Build Use Case

Another motivating application was providing a way to incrementally build out equipment shipped to customer sites.
During the sales process, a potential configuration is built.

Carthage simulates this configuration in a virtual environment. This allows field engineers to validate the configuration
and potentially to plan for the site visit. In cases where the simulation is good enough, the customer may be able to get
a better picture of how the product will help them.

Often it is necessary to build and configure systems before deploying them at the customer site. During this process,
virtual components from the pre-sales simulation are replaced with real components that will eventually be shipped to
the customer. As the ship date approaches then more of the system uses real hardware.

Several requirements emerged from this use case:

• Support for combining real and virtual equipment in the same layout and changing this over time

• Support for integrating with provisioning and asset management systems to define what components are present
in a layout

• Ability to view and interact with virtual components of a layout in a manner similar to how they will work once
deployed

1.3 Reproducing Problems Use Case

When a complex set of related equipment is shipped to a customer, it is not feasible to keep a duplicate set of equipment
on which to reproduce problems. Even if spare inventory is available to recreate and configure the environment, doing
so takes time and space.

Carthage can be used to reproduce customer environments in enough detail to reproduce problems. The approach is
similar to the build out use case. Initially a fully virtual simulation of what is set up at the customer is used. Real
components are substituted in until the problem can be reproduced. (For pure software problems, real components may
not be needed.)

2 Chapter 1. Introduction

Carthage Core Documentation

The same approach can be used for validating additions to a customer environment.

1.4 Cyber Training Use Case

In order to defend networks, defenders need a high quality training environment. This environment needs to be isolated
from the defended network (and often entirely from the Internet):

1. Attacks in a training exercise must not affect production systems.

2. In some cases, defense strategies are confidential and there are concerns that attackers might be able to observe
them if the environment is not isolated.

Carthage generates a cyber range similar to some defended system. In some cases, for example when defended networks
have industrial automation, real components may be integrated into the range where purchasing a physical device for
the training is more effective than creating a virtual model. Defenders and attackers access resources within the range
using desktop virtualization tools.

Producing ranges using an IAC strategy has a number of benefits:

• Ranges can easily be reset to known conditions.

• Over time the fidelity of the range improves as more IAC components become available.

Cyber training requires relatively high-fidelity simulation of the defended system. Using micro services and containers
in a simulation is desirable if that is what the actual defended system uses. But for many defended systems, a mix of
virtual machines is required. For some attacks such as attacks on firmware, even normal virtual machines may not
provide an accurate enough simulation. Carthage has not yet been used heavily in such environments.

1.4. Cyber Training Use Case 3

Carthage Core Documentation

4 Chapter 1. Introduction

CHAPTER

TWO

API DOCUMENTATION

2.1 Dependency Injection

Often in developing IAC systems, the part of the system that needs to know something about the environment is sepa-
rated from the part of the system that can make that decision. For example:

1. Cloud resources are typically placed in some folder, region or tenancy. The resources are defined in a layout
focused on describing how to create the resources. The information about where to put them is in a part of the
code focused on instantiating those resources.

2. Depending on how it is being used, sometimes a layout may be instantiated on virtual machines (or containers)
and sometimes on real hardware. As an example in the Testing Use Case, the entire layout may be virtualized.
However, in the Customer Build Use Case, the same layout may be partially or completely built on real hardware.
As above, the layout is focused on describing the resources and how to instantiate them. The application using
the layout knows what hardware will be used and where virtual components will live.

3. A layout might contain a template for building a work group. This builds a network, router, and a series of
workstations. These need to be connected to the broader layout. The template needs to know where to connect
and needs to know details such as the names of constructed workstations. Other parts of the layout will instantiate
the template multiple times.

2.1.1 How Dependency Injection Works

An object such as a function or class declares dependencies using inject()

@inject(connect_to = Network)
def build_workstation(name, *, connect_to: Network):
#Build a workstation called name and connect to connect_to

The inject decorator effectively says that the decorated object/function needs some parameter, but the direct caller is
unlikely to be able to supply the value. An object decorated this way is said to have dependencies that need to be
injected. Such objects can be called normally:

build_workstation(name = "ws1", connect_to = some_network)

Doing so requires the caller to provide all the dependencies. Instead, it is more common to use a Injector to call an
object that requires dependencies:

injector(build_workstation, name = "ws1")

The injector injects (supplies values for) the dependencies. The name argument of build_workstation needed to be
supplied by the caller, because it was not marked as an injected dependency. However, connect_to can be injected by

5

Carthage Core Documentation

the injector if the injector or one of its parents provides a dependency for Network. An injector can be instantiated
with such dependencies:

injector = Injector(parent)
injector.add_provider(some_network)

This sets up an injector which inherits dependencies from an existing injector and then adds an existing network to the
injector. Most injectors eventually inherit from carthage.base_injector.

2.1.2 Injectors and Classes

Injectable is a base class for objects that need dependencies injected:

@inject_autokwargs(this_network = Network)
class NeedsNetwork(Injectable):

def do_something(self):
print(self.this_network)

The inject_autokwargs() decorator works like inject except that it raises TypeError if the parameter is not speci-
fied either by a caller or an injector. Injectable.__init__() examines dependencies associated with the class and
sets an attribute on self capturing any provided dependency.

2.1.3 Injection Keys

Sometimes a class may require more than one of a given kind of object. Often an injector may have more than one of a
given type of object available to provide dependencies. injectionKey combines a type with a set of named constraints
to select which object is required:

@inject_autokwargs(
outside_network = InjectionKey(Network, role="outside"),
inside_network = InjectionKey(Network, role = "inside"))

class Firewall(Injectable):
outside_network and inside_network will both be set.

Then other code can set up an injector:

injector.add_provider(InjectionKey(Network, role="outside"), outside_network)
injector.add_provider(InjectionKey(Network, role="inside"), inside_network)

Although it might be more common for the outside and inside network to be set up in different injectors:

outer_injector already provides InjectionKey(Network, role="outside")
Provide a firewall for foo.com, bar.com and baz.com
for org in ("foo.com", "bar.com", "baz.com"):

org_injector = outside_injector(Injector)
org_network = org_injector(Network, name = f"{org} internal network")
org_injector.add_provider(InjectionKey(Network, role="inside"), org_network)
org_injector.add_provider(Firewall)
org_firewall = org_injector.get_instance(Firewall)

6 Chapter 2. API Documentation

Carthage Core Documentation

2.1.4 API Reference

2.1.5 Events

The dependency injection system emits several events.

add_provider
Emitted when carthage.dependency_injection.Injector.add_provider() is called. Dis-
patched to all the keys that the dependency will satisfy. The target of the event is the object providing
the dependency, typically an uninstantiated class. Also dispatched to InjectionKey(Injector)
as a wildcard. Contains the add_provider parameters as well as other_keys, indicating other keys by
which this dependency will be provided.

dependency_progress
Emitted whenever an instantiation makes progress (for example resolving a AsyncInjectable
or calling a coroutine. The target is a carthage.dependency_injection.
InstantiationContext. The value can be obtained with the get_value method. This event
is dispatched to all the keys that the add_provider event would be dispatched to.

dependency_final
Emitted whenever an instantiation finalizes (async object is ready for example). Same target and keys
as dependency_progress.

2.2 Setup Tasks

2.3 Networking Documentation

2.3.1 Network Events

The following events may be generated by the networking system resolved

Emitted toward InjectionKey(NetworkConfig) when a carthage.network.NetworkConfig is re-
solved. The target is the network config that has resolved;

param other_futures
When both sides of a link are configured at the same time, the other side of the link cannot
be resolved until its carthage.Machine is ready.In this case a future is recorded and
included in the event.

This event is typically used to collect the set of futures for other_links. When all these futures are done,
then all effects from resolution of the NetworkConfig have been realized.

public_address
Emitted toward InjectionKey(NetworkLink) and InjectionKey(NetworkLink, host=model.name)
when some part of the system becomes aware of the public address of a link behind a NAT. A public_address
property is set on the link’s merged_v4_config prior to emitting the event.

2.2. Setup Tasks 7

Carthage Core Documentation

2.4 Machines: Systems under Control or Simulation

2.4.1 Containers

2.4.2 VMs

2.4.3 Hardware Configuration

VMs and cloud instances will look for the following properties in a AbstractMachineModel to configure hardware:

cpus
The number of CPUs on the virtual machine

memory_mb
The amount of memory in megabytes

disk_sizes
A sequence of disk sizes for primary and secondary disks. Provided in GiB.

disk_config
A sequence of dicts configuring primary and secondary disks. The only key defined at this level is size, the
size of the disk in GiB. If disk_config is provided, disk_sizes is ignored. The intent of disk_config is to per-
mit MachineImplementation specific configuration of disks. Consult the specific machine implementations for
details.

nested_virt
Boolean indicating whether to allow nested virtualization

2.5 Open Container Interface Support

2.5.1 The OCI Layer

2.5.2 Podman

2.6 Images and Volumes

Images are handled for containers by image.ContainerVolume and VMs with image.ImageVolume.

2.7 SSH and Rsync Support

2.8 File Copying and Insertion

8 Chapter 2. API Documentation

CHAPTER

THREE

MODELING LAYER

Classes like carthage.Network and carthage.machine.AbstractMachineModel provide an abstract interface to
infrastructure resources.

The modeling layer provides a generally declarative interface for defining and configuring such models. The modeling
layer provides a domain-specific language for describing models. Python metaclasses are used to modify Python’s
behavior in a number of ways to provide a more concise language for describing models.

3.1 A Simple Model

Listing 1: A simple modeling layout to define a machine

1 # Copyright (C) 2021, Hadron Industries, Inc.
2 # Carthage is free software; you can redistribute it and/or modify
3 # it under the terms of the GNU Lesser General Public License version 3
4

5 from carthage.modeling import *
6

7 class layout(CarthageLayout):
8

9 layout_name = "example_1"
10

11 class foo(MachineModel):
12

13 name = "foo.com"
14

15

With such a model, one might instantiate the layout by applying an injector:

layout_instance = injector(layout)

The layout class is an instance of CarthageLayout which is a kind of InjectableModelType. By default each
assignment of a type in the class body of a InjectableModelType is turned into a runtime instantiation. This means
that while layout.foo is a class (or actually a class property), layout_instance.foo is an injector_access.
The first time layout_instance.foo is accessed, layout_instance.injector is used to instantiate it. Thereafter,
layout_instance.foo is an instance of layout.foo.

9

Carthage Core Documentation

3.2 The Modeling Language

Modeling classes are divided into several types (metaclasses). Names that include the word modeling are internal.
Users may need to know about their attributes, but these classes should only be used in extending the modeling layer.
Classes containing model in their name are directly usable in layouts. This section describes the behavior of the
modeling types that make up the modeling language.

Model classes sometimes involve a new construct called a modelmethod. Unlike other types of methods, modelmeth-
ods are available in the class body. For example, add_provider can be used to indicate that on class instantiation, some
object should be added to an InjectableModel‘s injector:

class foo(InjectableModel):
add_provider(InjectionKey("baz"), Network)

class carthage.modeling.ModelingBase

All modeling classes derive their type from ModelingBase and have the following behaviors:

• Unlike normal Python, an inner class can access the attributes of an outer class while the class body is being
defined:

class foo(metaclass = ModelingBase):
attr = 32
b = attr+1
class bar(metaclass = ModelingBase):

a = b+1
attr = 64

In the above example, while the body of bar is being defined, attr and b are available.

However, only variables that are actually set in a class body survive into the actual class. So in the above
example, foo.bar.a and foo.bar.attr are set in the resulting class. While it was used in the class body,
foo.bar.b will raise AttributeError. If an attribute should be copied into an inner class, the following
will work:

class outer(metaclass = ModelingBase):
outer_attr = []
class inner(metaclass = ModelingBase):

outer_attr = outer_attr

• ModelingBases support the modeling decorators.

• The dynamic_name() decorator can be used to change the name under which an assignment is stored.
This permits programatic creation of several classes in a loop:

class example(metaclass = ModelingBase):

create a machine for each user
for u in users:

@dynamic_name(f'{u}_workstation')
class workstation(MachineModel): # ...

del u #to avoid polluting class namespace Now we have
#several workstation inner classes, named based on the
#argument to dynamic_name rather than each being called
#workstation.

10 Chapter 3. Modeling Layer

Carthage Core Documentation

The dynamic_name decorator is particularly useful with injectors where it can be used to build up a set of
machines that can be selected using Injector.filter_instantiate().

class carthage.modeling.InjectableModel

class carthage.modeling.InjectableModelType

InjectableModel represents an Injectable. InjectableModels have the following attributes:

• InjectableModels automatically have an Injector injected and made available as the injector attribute.

• By default, any attribute assigned a value in the body of the class is also added as a provider to the injector
in the class using the attribute name as a key. That is:

class foo(InjectableModel):
attr = "This String"

foo_instance = injector(foo)
assert foo_instance.injector.get_instance(InjectionKey("attr")) == foo_instance.
→˓attr == foo.attr

This makes it very convenient to refer to networks and to construct instances that need to be constructed
in an asynchronous context. Ideally there would be a decorator to turn this behavior off for a particular
assignment, but currently there is not.

• By default, any attribute in the class body assigned a value that is a type (or that has a transclusion key)
will be transformed into an injector_access(). When accessed through the class, the injector_access
will act as a class property returning the value originally assigned to the attribute. That is, class access
generally works as if no transformation had taken place. However, when accessed as an instance property,
the get_instance method on the Injector will be used to instantiate the class. See the first example for an
example. If this transformation is not desired use the no_instantiate() decorator.

• Certain classes such as carthage.network.NetworkConfig will automatically be added to an injector
if they are assigned to an attribute in the class body.

• The provides() and globally_unique_key() decorators can be used to add additional
InjectionKeys by which a value can be known.

• The allow_multiple() and no_close() decorators can modify how a value is added to the injector.

Decorators are designed to be applied to classes or functions. If modeling decorators need to be applied to other
values the following syntax can be used:

external_object = no_close()(object)
val_with_extra_keys = provides(InjectionKey("an_extra_key"))(val)

The dynamic_name() decorator is powerful when used with InjectableModel. As an example, a collection of
machines can be created:

class machine_enclave(Enclave):

domain = "example.com"
for i in range(1,5):

@dynamic_name(f'server_{i}')
@globally_unique_key(InjectionKey(MachineModel, host = f'server-{i}.

→˓{domain}'))
class machine(MachineModel):

name = f"server-{i}"

3.2. The Modeling Language 11

Carthage Core Documentation

Note that the call to globally_unique_key() is included only for illustrative purposes. The
our_key() method of MachineModel accomplishes the same goal.

With a layout like the above, machine models are available as machine_enclave.server_1. But
once the layout is instantiated, the injector can also be used:

machines = injector(machine_enclave)
machines.injector.get_instance("server_1")
#also available with the global key
machines.injector.get_instance(InjectionKey(MachineModel, host = "server-1.
→˓example.com"))
#Or available all at once:
all_machines = machines.injector.filter_instantiate(MachineModel, ['host'],␣
→˓stop_at = machines.injector)

add_provider(key: InjectionKey, value, **options)
Adds key to the set of keys that will be registered with an instance’s injector when the model is instantiated.
Eventually, in class initialization, code similar to the following will be called:

self.injector.add_provider(key, value, **options)

class carthage.modeling.ModelContainer

class carthage.modeling.ModelingContainer

InjectableModel provides downward propagation. That is, names defined in outer classes are available at
class definition time in inner classes. Since injector_access() is used to instantiate inner classes, this means
that the parent injector for the inner class is the outer class. Thus, attributes and provided dependencies made
available in the outer class are available in the inner class at runtime through the injector hierarchy.

Sometimes upward propagation is desired. Consider the following example:

Copyright (C) 2021, Hadron Industries, Inc.
Carthage is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 3

from carthage import *
from carthage.modeling import *

class layout(CarthageLayout):

class it_com(Enclave):

domain = "it.com"

class server(MachineModel): pass

class bank_com(Enclave):

domain = "bank.com"

class server(MachineModel): pass

In this example machines can be accessed as layout.bank_com.server and layout.it_com.server. Once
instantiated, the following injector access also works:

12 Chapter 3. Modeling Layer

Carthage Core Documentation

l = injector(layout)
l.bank_com.injector.get_instance(InjectionKey(MachineModel, host = "server.bank.com
→˓"))
l.it_com.injector.get_instance(InjectionKey(MachineModel, host = "server.it.com"))

But you might want to look at machines without knowing where they are defined in the hierarchy:

l.injector.get_instance(InjectionKey(MachineModel, host = "server.it.com"))
Or all the machines in the entire layout
l.injector.filter(MachineModel, ['host'], stop_at = l.injector)

Modeling containers provide upward propagation so these calls work:
entries registered in l.it_com.injector are propagated so they are available in l.injector. That’s the
opposite direction of how injectors normally work. Upward propagation is only at model definition time; the set
of items to be propagated are collected statically as the class is defined. Items added to injectors at runtime are
not automatically propagated up.

For upward propagation to work, containers must provide dependencies for some InjectionKey, and
that key must have some constraints associated with it. For example, Enclave‘s our_key method pro-
vides InjectionKey(Enclave, domain = self.domain). If keys with constraints are marked with
propagate_key(), then those are used. If not, then all keys with constraints are used.

When one container is added to another, all the container propagations in the inner container are propagated to
the outer container as follows:

• If the propagation has a globally_unique_key(), then that key is registered unmodified in the outer
container.

• If there is no globally unique key, then the constraints of the propagation’s key are merged with
the constraints of the key under which the inner container is registered with the outer container.
Consider an inner container InjectionKey(Enclave, domain="it.com") and a propagation of
InjectionKey(Network, role = "site"). Within the inner container, the network can be accessed
using InjectionKey(Network, role = "site"). After the constraints are merged, the network can be
accessed in the outer container as InjectionKey(Network, role = "site", domain = "it.com").

The injector_xref() facility is used so that instantiating the key in the outer container both instantiates the
inner container and the object within it.

Only the following objects are considered for propagation:

• Any ModelContainer including MachineModel, NetworkModel, ModelGroup, ModelContainer, and
Enclave is propagated.

• The propagate_key() decorator can be used to request propagation for other objects.

3.3 Base Models

3.4 Decorators

3.3. Base Models 13

Carthage Core Documentation

14 Chapter 3. Modeling Layer

CHAPTER

FOUR

DESIGNING A GOOD MODEL

4.1 Arguments

Arguments for a model can come from multiple places:

• From the injector hierarchy:

@inject_autokwargs(verbose_logging=InjectionKey("verbose_logging"))
class Model(InjectableModel): pass

class enclave(Enclave):

verbose_logging = True

class submodel(Model): pass #gets verbose_logging from its environment

• At instantiation time:

model = await self.ainjector(Model, verbose_logging='tuesdays_only')

• From within a subclass in a layout:

class enclave(Enclave):

class model_instance(Model):

verbose_logging = 'wednesdays'

In most situations, if an argument can be specified in the injector hierarchy, the other two methods of argument passing
should also work. Supporting an argument as either kwargs or specified in a subclass is desired in most cases. Kwarg
(and injector) support may not be needed if subclass support is provided and an argument can be adjusted on an instance
after instantiation.

When considering which forms of argument passing are appropriate for a given model, consider two usage scenarios. A
model should be usable in a Python program that instantiates it in a procedural function. Such usage can easily supply
kwargs and can easily set properties on an instance after instantiation. Models should also be usable in the declarative
modeling language. That usage makes it easy to specify dependencies provided by injectors and to set default values in
subclasses. Specifying kwargs not supplied by dependencies from injectors and adjusting properties after instantiation
are more difficult in the declarative language.

Note there are some interactions between these argument methods.

1. When arguments are specified in the injector hierarchy, the Injector will populate kwargs from the injected
dependencies, so when instantiated the model will receive the arguments as kwargs.

15

Carthage Core Documentation

2. In contrast, when arguments are specified within an instance of a model in the modeling language, kwargs are
never used. Instead, properties are set directly on the class that the model inherits from.

3. Arguments specified in a modeling language instance will typically cascade into sub models via the injector
hierarchy—the third method of specifying arguments also can become the first:

class outer_model(Model):

verbose_logging = 'odd_thursdays' # sets for this instance

class inner_model(Model):

But also sets a value in the injector, so that
the inner instance also gets a verbose_logging of 'odd_thursdays'

4.1.1 Implementing the Three Argument Strategies

The following class can take verbose_logging either from the injector environment, as a kwarg, or set in subclasses:

@inject_autokwargs(
verbose_logging=InjectionKey('verbose_logging', _optional=NotPresent),
)
class SomeModel(InjectableModel):

do things here
verbose_logging = False

If the injector environment does not contain verbose_logging then no kwarg is specified (because of setting _optional to
NotPresent). That will permit a subclass to override the default for verbose_logging specified in the class. An explicit
kwarg will override the injector environment, as is always the case for Injector.__call__().

Note that because this model is a modeling class, any contained subclass will have verbose_logging in its injector
environment:

@inject_autokwargs(
verbose_logging=InjectionKey('verbose_logging', _optional=NotPresent),
)
class SomeModel(InjectableModel):

do things here
verbose_logging = False
class interior(InjectableModel):

verbose_logging is set.

16 Chapter 4. Designing a Good Model

CHAPTER

FIVE

CONFIGURING VAULT

The Vault.apply_configuration() method will apply a set of configurations to a Hashicorp Vault. The intent is
to allow initial configuration of policies and authentication.

The method takes a dictionary, but typically this dictionary comes from a YAML file. The following special keys are
recognized:

policy:
A Dictionary mapping policies to HCL documents.

auth:
A dictionary for auth method configuration. The keys in this dictionary are paths on which authentication methods
are mounted; The values are dictionaries containing the following keys:

type
The type of authentication method; cert, or github for example.

default_lease_ttl
The default lease TTL

maximum_lease_ttl
The longest lived tokens issued by this auth backend.

All other keys in the configuration dictionary will be taken as paths that will be written. The value will be JSON
encoded. An example YAML file might look like:

policy:
sec_admin: |
path "/sys/policy/*" {
capabilities = ["read", "update", "create", "delete", "list"]
}

auth:
cert:
type: cert
default_lease_ttl: 60m

auth/cert/cert/hadron:
certificate: |
A PEM encoded certificate goes here

allowed_common_names: ["*@hadronindustries.com"]

17

Carthage Core Documentation

18 Chapter 5. Configuring Vault

PYTHON MODULE INDEX

c
carthage.debian, 8
carthage.image, 8

19

Carthage Core Documentation

20 Python Module Index

INDEX

A
add_provider() (carthage.modeling.InjectableModelType

method), 12

C
carthage.debian

module, 8
carthage.image

module, 8

I
InjectableModel (class in carthage.modeling), 11
InjectableModelType (class in carthage.modeling), 11

M
ModelContainer (class in carthage.modeling), 12
ModelingBase (class in carthage.modeling), 10
ModelingContainer (class in carthage.modeling), 12
module

carthage.debian, 8
carthage.image, 8

21

	Introduction
	Testing Use Case
	Customer Build Use Case
	Reproducing Problems Use Case
	Cyber Training Use Case

	API Documentation
	Dependency Injection
	How Dependency Injection Works
	Injectors and Classes
	Injection Keys
	API Reference
	Events

	Setup Tasks
	Networking Documentation
	Network Events

	Machines: Systems under Control or Simulation
	Containers
	VMs
	Hardware Configuration

	Open Container Interface Support
	The OCI Layer
	Podman

	Images and Volumes
	SSH and Rsync Support
	File Copying and Insertion

	Modeling Layer
	A Simple Model
	The Modeling Language
	Base Models
	Decorators

	Designing a Good Model
	Arguments
	Implementing the Three Argument Strategies

	Configuring Vault
	Python Module Index
	Index

